
 

 

  
Abstract— In this paper, we obtain exact solutions of time-

fractional Advection-Diffusion model equations by means Fractional 
Complex Transform (FCT) coupled with modified differential 
transform method. The derivatives are defined in terms of Jumarie’s 
sense. Two illustrative examples are considered in elucidating the 
effectiveness of the proposed technique. The method requires little 
knowledge of fractional calculus while obtaining exact solutions of 
fractional equations with high level of accuracy not being 
compromised. 
 

Keywords— Fractional calculus; modified DTM; Advection-
Diffusion model.  

I. INTRODUCTION 
N applied science domain, most modelling problems do arise 
in the form of advection-diffusion models whose solutions 

appear to be of great importance [1-3].  
Many scholars have proposed a lot of analytical, semi- 

analytical, and numerical solution methods for solving the 
advection-diffusion equations and other related linear and 
nonlinear differential models. These approaches include the 
Variational Iteration Method (VIM), Decomposition Method 
(ADM), Homotopy Analysis Method (HAM), Differential 
Transformation Method (DTM),  Reduced  Differential 
Transform Method (RDTM), Modified extended tanh-function 
method, Chebyshev spectral collocation method and so on [4-
16]. 

The notion of fractional differential equation acts as a 
response for an expression that can be varied to describe the 
order of the derivative. In a generalized form, Momani [17] 
considered by means of ADM, the non-perturbation analytical 
solutions of the Burgers equation with time- and space- 
fractional orders. 

In this present work, we will be considering time-fractional 
advection-diffusion equations whose derivative is defined in 
the sense of Jumarie. In general, a convection-diffusion model 
having no source term is traceable to stochastic dynamics with 
great impact in financial engineering [18]. 

Fractional Complex Transform (FCT) transforms fractional 
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order differential equations to integer differential equations 
with the help of Riemann-Liouville derivatives [19-21]. Other 
solution methods for linear and nonlinear models include [22-
28]. FCT as a solution method for fractional differential 
equations (FDEs) was first proposed by [29]. The notion of 
Jumarie’s fractional derivative is introduced as follows before 
the overview of FCT. 

II. JUMARIE’S FRACTIONAL DERIVATIVE (JFD) 
 It is noted here that JFD is a modified form of the Riemann-

Liouville derivatives [21]. Hence, the definition of JFD and its 
basic properties as follows: 
Let ( )h v  be a continuous real function of v  (not necessarily 

differentiable), and v
hD h

v

α
α
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∂
=

∂
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where ( )Γ ⋅  denotes a gamma function. As summarized in 

[21], the basic properties of JFD are stated as P1-P5: 
P1:  0,  0vD kα α= > , 

P2: ( )( ) ( ) ,  0v vD kh v kD h vα α α= > , 
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P5: ( )( )( ) 1
v v gD h v g D h D vα α= ⋅ , 

where k  is a constant. 
Note: P1, P2, P3, P4, and P5 are referred to as fractional 

derivative of: constant function, constant multiple function, 
power function, product function, and function of function 
respectively. P5 can be linked to Jumarie’s chain rule of 
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fractional derivative. 

A. The Fractional Complex Transform and DTM 
Here, we briefly introduce the concept of the FCT and the 

RDTM. 

B. The Fractional Complex Transform 
Let us consider a general fractional differential equation of 

the form: 
 

( ) ( ), , , , 0,  , , ,t x y zf D D D D t x y zα β λ γϖ ϖ ϖ ϖ ϖ ϖ ϖ= = . 

                                                                                         (2.2) 
Then, the Fractional Complex Transform [30] is defined as 
follows: 
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where ,  ,  ,  and a b c d  are unknown constants. 
From P3,  
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Obviously in a similar manner, using properties P1-P5, and 
the FCT in (2.3), the following are easily obtained: 
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Hence,  
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III. THE REDUCED DIFFERENTIAL TRANSFORM [1-11, 13] 

Suppose ( ),m x t   is an analytic and continuously 

differentiable function, defined in a domain D , then the 
differential transform (DF) of ( ),m x t  is defined and denoted 
by: 
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where ( )kM x and ( ),m x t  are referred to as the transformed 
and the original functions respectively. Thus, the differential 
inverse transform (DIT) of ( )kM x  is defined and denoted as: 
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k

k
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A. The fundamentals properties of the DTM 

D1: If ( ) ( ) ( ), , ,m x t p x t q x tα β= ± ,   then  
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IV. ILLUSTRATIVE APPLICATIONS 
In this subsection, the proposed method is applied to some 

examples of Advection-Diffusion model equations of time-
fractional orders as follows. 

 

A. Example 1: Consider the time-fractional homogeneous 
advection diffusion equation:  

( )0, , ,t xD u uu  u u x tα + = =                   (4.1)  

subject to: 

( ),0u x x= −                            (4.2) 

Solution procedure: 
By FCT,  
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Thus, applying the RDTM to (4.3) gives the recursive relation: 
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By the properties of the RDTM, we have the exact solution of 
(4.3) as follows: 
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Hence, the exact solution of (4.1) is: 

( )

( )
( )

( ) ( )

,
1

1

1
, 1 .

1

xu x t
t

x
           t

t

α

α
α

α

α
α

α

=
 

− Γ + 
Γ +

= Γ + ≠
− Γ +

      (4.6) 

Note: when 1α = , we have ( ), , 1.
1

xu x t  t
t

= ≠
−

 which 

corresponds to the exact solution as contained  [1]. 

B. Example 2: Consider the time-fractional diffusion 
equation:  

( )
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Solution procedure: 
By FCT,  
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,
1
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Thus, applying the RDTM to (4.8) gives the recursive relation: 
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By the properties of the RDTM, we have the exact solution of 
(4.8) as follows: 
 

( ) ( ) ( )2, exp sin .u x T T xπ π= −             (4.10) 

Hence, the exact solution of (4.7) is: 
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           (4.11) 

Note: when 1α = , we have ( ) ( ) ( )2, exp sin .u x t t xπ π= −  

which corresponds to the exact solution as contained  [14]. 
Here, we present in Fig. 1 through Fig. 9, the relationship 
between the exact solutions of the integer cases 1α = , and the 
fractional cases for α ∈  with respect to example I. 
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Fig. 1: The solution graph for  1.5t =  w.r.t. Example 1 
 

 
Fig. 2: The solution graph for 1.5t =  w.r.t. Example 1 

 
 

 
 

 
Fig. 3: The solution graph for  1.5t =  w.r.t. Example 1 
 

 
Fig. 4: The solution graph for 0.8t =  w.r.t. Example 2 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 428



 

 

 
Fig. 5: The solution graphs for 0.8t =  w.r.t. Example 2 

 

 
Fig. 6: The solution graph for 0.8t =  w.r.t. Example 2 

 
Fig. 7: The solution graphs for 0.8t =  w.r.t. Example 2 

 

 

 
Fig. 8: The solution graphs for 1t =  w.r.t. Example 2 

 

 
Fig. 9: The solution graph for 1t =  w.r.t. Example 2 

 

C.  Example 3: Consider the time-fractional linear 
advection-diffusion equation: 

   ,t x xxD u ku vu  α + =  ( ) [ ]1,1 0,x  , t T∈ − ∈   (4.12) 

       
where u signifies the velocity such that is the constant 
advection velocity and  the kinetic viscosity [31]. 
 
By FCT,  

 
( )

,
1
atT

α

α
=

Γ +
       

which according to section 3 gives t
uD u
T

α ∂
=

∂
 for 1.a =  

Hence, (4.12) becomes: 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 429



 

 

T x xxu ku vu  + = .                         (4.13) 
We supposed the solution of (4.13) to be: 

( ) ( ), , x Tu x T v x T eλ β+=              (4.14) 

for a change of variable. Hence, (4.13) becomes: 

( ) ( )2
T x xxv kx v v k v v vvβ λ+ + − + − =               (4.15) 

We choose λ  and β  in such a way that 2k vλ=  and 
2 4k vβ= − . Therefore (4.15) becomes: 

T xxv vv  = .                         (4.16) 
Thus, applying the RDTM to (4.16) gives the recursive 
relation: 
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By the properties of the RDTM, we have the exact solution of 
(4.3) as follows: 
Therefore, for 0,k ≥  we have: 
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Thus subjecting (4.16) to: 
 

( ) 2,0 1v x x= +                       (4.18) 

gives: 

( ) ( )2,1 2 1V x x= + , 
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Hence, the exact solution of (4.12) is: 
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Note: when 1α = , we have: 
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Note: we present in Fig. 10 through Fig. 12, the graphical 
views of the obtained solution with respect to (w.r.t) 
example 3 to see the effects of the associate parameters.  For 
Fig. 10, 1,  0.85,α λ= = and 0.5β = .  For Fig. 11, 

0.95,  0.85,α λ= = and 1β = . For Fig. 12, 

0.95,  0.65,α λ= = and 1β = . 

 
Fig. 10: The solution graph for  0.4t =  w.r.t. Example 3 
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Fig. 11: The solution graph for  0.4t =  w.r.t. Example 3 

 

 
Fig. 12: The solution graph for  0.4t =  w.r.t. Example 3 

 

V. CONCLUDING REMARKS 
We obtained exact solutions of time-fractional Advection-

Diffusion model equations by means of FCT coupled with 
modified differential transform method. The FCT is indeed 
simple but effective and accurate for the solutions of fractional 
differential equations. The associated derivatives were defined 
in terms of Jumarie’s sense. Basic knowledge of advanced 
calculus is more required than that of fractional calculus while 
obtaining exact solutions of fractional equations with high 
level of accuracy not being compromised. This can therefore 
be extended to space-fractional derivatives of higher orders. 
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